Generalized Ridge Regression Estimator in Semiparametric Regression Models

نویسندگان

  • Gholam Kibria Department of Mathematics and Statistics, Florida International University, Florida, USA.
  • Mahdi Roozbeh Department of Statistics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Iran.
  • Mohammad Arash Department of Statistics, School of Mathematical Sciences, University of Shahrood, Iran.
چکیده مقاله:

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The main focus of this paper is to develop necessary tools for computing the risk function of regression coefficient based on the eigenvalues of design matrix in semiparametric regression model, making use of differencing methodology. In this respect, some new estimators for shrinkage parameter are also proposed. It is shown that one of these estimators which is constructed based on well-known harmonic mean, performs better for large values of signal to noise ratio. For our proposal, the Monte Carlo simulation studies and a real application related to housing attributes are conducted to illustrate the efficiency of shrinkage estimators based on minimum risk criteria.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cook’s distance for ridge estimator in semiparametric regression

The detection of influential observations has attracted a great deal of attention in last few decades. Most of the ideas of determining influential observations are based on single-case diagnostics with ith case deleted. The Cook’s distance are most commonly used among the other single-case diagnostics and successfully applied to various statistical models. In this article, we propose Cook’s di...

متن کامل

Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors

Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...

متن کامل

Weighted Ridge MM-Estimator in Robust Ridge Regression with Multicollinearity

This study is about the development of a robust ridge regression estimator. It is based on weighted ridge MM-estimator (WRMM) and is believed to have potentials in remedying the problems of multicollinearity. The proposed method has been compared with several existing estimators, namely ordinary least squares (OLS), robust regression based on MM estimator, ridge regression (RIDGE), weighted rid...

متن کامل

Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models

This paper presents a fully Bayesian approach to regression splines with automatic knot selection in generalized semiparametric models for fundamentally non Gaussian responses In a basis function representation of the regression spline we use a B spline basis The reversible jump Markov chain Monte Carlo method allows for simultaneous estimation both of the number of knots and the knot placement...

متن کامل

Ridge Regression Estimator: Combining Unbiased and Ordinary Ridge Regression Methods of Estimation

Statistical literature has several methods for coping with multicollinearity. This paper introduces a new shrinkage estimator, called modified unbiased ridge (MUR). This estimator is obtained from unbiased ridge regression (URR) in the same way that ordinary ridge regression (ORR) is obtained from ordinary least squares (OLS). Properties of MUR are derived. Results on its matrix mean squared er...

متن کامل

Minimum Message Length Ridge Regression for Generalized Linear Models

This paper introduces an information theoretic model selection and ridge parameter estimation criterion for generalized linear models based on the minimum message length principle. The criterion is highly general in nature, and handles a range of target distributions, including the normal, binomial, Poisson, geometric and gamma distributions. Estimation of the regression parameters, the ridge h...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره None

صفحات  25- 62

تاریخ انتشار 2015-06

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023